ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Перед экстрасенсом лежит колода из 36 карт рубашкой вверх (4 масти, по 9 карт каждой масти). Он называет масть верхней карты, после чего карту открывают и показывают ему. После этого экстрасенс называет масть следующей карты и т. д. Задача экстрасенса – угадать масть как можно большее число раз. Рубашки карт несимметричны, и экстрасенс видит, в каком из двух положений лежит верхняя карта. Помощник экстрасенса знает порядок карт в колоде, не может менять его, но может расположить рубашку каждой из карт тем или иным образом. Мог ли экстрасенс так договориться с помощником, когда тот ещё не знал порядок карт, чтобы обеспечить угадывание масти не менее чем |
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 737]
а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться? б) Тот же вопрос для решётки 7×7 (всего 64 узла).
Перед экстрасенсом лежит колода из 36 карт рубашкой вверх (4 масти, по 9 карт каждой масти). Он называет масть верхней карты, после чего карту открывают и показывают ему. После этого экстрасенс называет масть следующей карты и т. д. Задача экстрасенса – угадать масть как можно большее число раз. Рубашки карт несимметричны, и экстрасенс видит, в каком из двух положений лежит верхняя карта. Помощник экстрасенса знает порядок карт в колоде, не может менять его, но может расположить рубашку каждой из карт тем или иным образом. Мог ли экстрасенс так договориться с помощником, когда тот ещё не знал порядок карт, чтобы обеспечить угадывание масти не менее чем
Сможет ли Буратино точно узнать, где закопан клад, если план города имеет вид: а) , б) ? (Перекрёстки отмечены точками.)
Во взводе служат три сержанта и несколько солдат. Сержанты по очереди дежурят по взводу. Командир издал такой приказ.
Паук в лесу сплёл паутину. Длинные нити привязал к веткам. И в эту паутину залетела бабочка. За один ход бабочка или паук могут передвинуться по отрезку нити в соседнюю точку пересечения нитей; бабочка также может выбраться на конец нити (ветку), если перед этим находилась в соседней точке пересечения. Они ходят по очереди, начинает бабочка. Если бабочка смогла добраться до веток, она спаслась (это её победа). Если паук добрался до бабочки, он её съедает (и это его победа). Возможен и такой исход, когда никто не побеждает, а игра длится бесконечно. а) Чем закончится игра в ситуации, изображённой на рисунке? (У паутины четыре кольца и семь радиусов.б) Чем закончится игра, если колец три, а радиусов семь? в) Чем закончится игра, если колец четыре, а радиусов десять? г) Разберите общий случай: K ≥ 2 колец и R ≥ 3 радиусов.
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|