|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости отмечены две точки на расстоянии 1. Разрешается, измерив циркулем расстояние между двумя отмеченными точками, провести окружность с центром в любой отмеченной точке с измеренным радиусом. Линейкой разрешается провести прямую через любые две отмеченные точки. При этом отмечаются новые точки – точки пересечения построенных линий. Пусть Ц(n) – наименьшее число линий, проведение которых одним циркулем позволяет получить две отмеченные точки на расстоянии n (n – натуральное). ЛЦ(n) – то же, но циркулем и линейкой. Докажите, что последовательность В пространстве даны три отрезка A1A2, B1B2 и C1C2, не лежащие в одной плоскости и пересекающиеся в одной точке P. Обозначим через Oijk центр сферы, проходящей через точки Ai, Bj, Ck и P. Докажите, что прямые O111O222, O112O221, O121O212 и O211O122 пересекаются в одной точке. В группе из 50 ребят некоторые знают все буквы, кроме "р", которую просто пропускают при письме, а остальные знают все буквы, кроме "к", которую тоже пропускают. Однажды учитель попросил 10 учеников написать слово "кот", 18 других учеников – слово "рот", а остальных – слово "крот". При этом слова "кот" и "рот" оказались написанными по 15 раз. Сколько ребят написали своё слово верно? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150]
В гимназии все ученики знают хотя бы один из древних языков – греческий или латынь, некоторые – оба языка. 85% всех ребят знают греческий язык и 75% знают латынь. Какая часть учащихся знает оба языка?
В группе из 50 ребят некоторые знают все буквы, кроме "р", которую просто пропускают при письме, а остальные знают все буквы, кроме "к", которую тоже пропускают. Однажды учитель попросил 10 учеников написать слово "кот", 18 других учеников – слово "рот", а остальных – слово "крот". При этом слова "кот" и "рот" оказались написанными по 15 раз. Сколько ребят написали своё слово верно?
Рассматриваются всевозможные треугольники с целочисленными сторонами и периметром 2000, а также всевозможные треугольники с целочисленными сторонами и периметром 2003. Каких треугольников больше?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|