ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
   
Рис. 1

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181]      



Задача 78823

Тема:   [ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8

На плоскости проведены четыре прямые a, b, c, d. Никакие две из них не параллельны и никакие три не пересекаются в одной точке. Известно, что прямая a параллельна одной из медиан треугольника, образованного прямыми b, c, d. Доказать, что прямая b параллельна некоторой медиане треугольника, образованного прямыми a, c и d.
Прислать комментарий     Решение


Задача 86933

Тема:   [ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что медианы тетраэдра (отрезки, соединяющие вершины с точками пересечения медиан противолежащих граней) пересекаются в одной точке и делятся ею в отношении 3:1 , считая от вершины.
Прислать комментарий     Решение


Задача 107713

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Разные задачи на разрезания ]
[ Свойства частей, полученных при разрезаниях ]
Сложность: 3
Классы: 8,9

Три равных треугольника разрезали по разноимённым медианам (см. рис. 1). Можно ли из получившихся шести треугольников сложить один треугольник?
   
Рис. 1

Прислать комментарий     Решение


Задача 108586

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Проекция на прямую (прочее) ]
Сложность: 3
Классы: 8,9

Через точку пересечения медиан треугольника ABC проходит прямая, пересекающая стороны AB и AC. Расстояния от вершин B и C до этой прямой равны b и c соответственно. Найдите расстояние от вершины A до этой прямой.

Прислать комментарий     Решение

Задача 111697

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Точки K , L , M и N — середины сторон соответственно AB , BC , CD и AD параллелограмма ABCD площади s . Найдите площадь четырёхугольника, образованного пересечением прямых AL , AM , CK и CN .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 181]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .