ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.

   Решение

Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 187]      



Задача 110074

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 7,8,9

Автор: Храбров А.

Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?

Прислать комментарий     Решение

Задача 65098

Темы:   [ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

По окружности записали красным пять несократимых дробей с нечётными знаменателями, большими 1010. Между каждыми двумя соседними красными дробями вписали синим несократимую запись их суммы. Могло ли случиться, что у синих дробей все знаменатели меньше 100?

Прислать комментарий     Решение

Задача 73758

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Натуральное число называют совершенным, если оно равно сумме всех своих делителей, кроме самого этого числа. (Например, число 28 – совершенное:  28 = 1 + 2 + 4 + 7 + 14.)  Докажите, что совершенное число не может быть полным квадратом.

Прислать комментарий     Решение

Задача 78619

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Уравнения в целых числах ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Обозначим через d(N) число делителей N (числа 1 и N также считаются делителями). Найти все такие N, что число  P =   – простое.

Прислать комментарий     Решение

Задача 107758

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при вычеркивании одной (не первой) цифры уменьшается в целое число раз.

Прислать комментарий     Решение

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .