Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Число умножили на сумму его цифр и получили 2008. Найдите это число.

Вниз   Решение


Даны положительные числа  a1, a2, ..., an.  Известно, что  a1 + a2 + ... + an ≤ ½.  Докажите, что  (1 + a1)(1 + a2)...(1 + an) < 2.

ВверхВниз   Решение


Автор: Сонкин М.

Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


Паша записал на доске пример на сложение, после чего заменил некоторые цифры буквами, причём одинаковые цифры – одинаковыми буквами, а различные цифры – различными буквами. У него получилось:  КРОСС + 2011 = СТАРТ.  Докажите, что Паша ошибся.

ВверхВниз   Решение


Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

Вверх   Решение

Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 352]      



Задача 65844

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 9,10,11

Четырёхугольник ABCD – вписанный,  AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что  MN = BM + ND.

Прислать комментарий     Решение

Задача 107779

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательные равные треугольники ]
[ ГМТ и вписанный угол ]
Сложность: 3+
Классы: 7,8,9

Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

Прислать комментарий     Решение

Задача 108056

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна  ½ AC² sin∠A.

Прислать комментарий     Решение

Задача 116520

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  S ≠ A,  AB = BS.  В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Задача 66993

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 7,8,9

В четырёхугольнике $ABCD$ известно, что $AB=BC=CD$, $\angle A = 70^\circ$ и $\angle B = 100^\circ$. Чему могут быть равны углы $C$ и $D$?
Прислать комментарий     Решение


Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .