ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямоугольник размером 1×k при всяком натуральном k будем называть полоской. При каких натуральных n прямоугольник размером 1995×n можно разрезать на попарно различные полоски?

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 133]      



Задача 110017

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9

К натуральному числу A приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до A . Найдите A .
Прислать комментарий     Решение


Задача 65710

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Дана клетчатая таблица 100×100, клетки которой покрашены в чёрный и белый цвета. При этом во всех столбцах поровну чёрных клеток, в то время как во всех строках разные количества чёрных клеток. Каково максимальное возможное количество пар соседних по стороне разноцветных клеток?
Прислать комментарий     Решение


Задача 66021

Темы:   [ Целочисленные и целозначные многочлены ]
[ Раскраски ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Автор: Жуков Г.

Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения  P(n1)P(n2)...P(nk).  По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным?

Прислать комментарий     Решение

Задача 97764

Темы:   [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
[ Арифметическая прогрессия ]
[ Числовые таблицы и их свойства ]
Сложность: 4
Классы: 9,10,11

Автор: Анджанс А.

  Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
  Доказать, что сумма площадей выбранных четырёхугольников равна  1/k SABCD.

Прислать комментарий     Решение

Задача 107780

Темы:   [ Геометрия на клетчатой бумаге ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 7,8,9

Прямоугольник размером 1×k при всяком натуральном k будем называть полоской. При каких натуральных n прямоугольник размером 1995×n можно разрезать на попарно различные полоски?
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .