|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Может ли ладья перейти из одного угла шахматной доски в противоположный угол (по диагонали), побывав по одному разу на всех 64 клетках? Окружность, построенная на стороне треугольника как на диаметре, высекает на двух других сторонах равные отрезки. Плоскость задана уравнением Ax+By+Cz+D=0 , причём числа A , B , C и D отличны от нуля. Докажите, что тогда уравнение плоскости можно записать в виде Расстояние между любыми двумя боковыми рёбрами наклонной треугольной призмы равно a . Боковое ребро равно l и наклонено к плоскости основания под углом 60o . Найдите площадь полной поверхности призмы. Докажите тождества: а) sin б) cos Известно число sin α. Какое наибольшее число значений может принимать а) sin α/2, б) sin α/3? |
Страница: << 1 2 [Всего задач: 9]
Сколько раз функция f(x) = cos x cos x/2 cos x/3 ... cos x/2009 меняет знак на отрезке [0, 2009π/2] ?
Известно число sin α. Какое наибольшее число значений может принимать а) sin α/2, б) sin α/3?
Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?
Докажите, что при n ≥ 6 правильный (n–1)-угольник нельзя так вписать в правильный n-угольник, чтобы на всех сторонах n-угольника, кроме одной, лежало ровно по одной вершине (n–1)-угольника.
Страница: << 1 2 [Всего задач: 9] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|