|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной
1. Столбик – это три кубика, стоящих рядом вдоль одного направления:
ширины, длины или высоты. Может ли быть так, что в каждом столбике Пусть O — центр прямоугольника ABCD. Найдите ГМТ M, для которых AM Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер AB , AA1 , AD и плоскости B1CD1 ; б) рёбер AB , AA1 , AD и прямой CD1 . На отрезке [0, 1] отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 113]
На отрезке [0, 1] отмечено несколько различных точек. При этом каждая отмеченная точка расположена либо ровно посередине между двумя другими отмеченными точками (не обязательно соседними с ней), либо ровно посередине между отмеченной точкой и концом отрезка. Докажите, что все отмеченные точки рациональны.
На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами.
M – множество точек на плоскости. Точка O называется "почти центром симметрии" множества M, если из M можно выбросить одну точку так, что для оставшегося множества O является центром симметрии в обычном смысле. Сколько "почти центров симметрии" может иметь конечное множество на плоскости?
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 113] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|