|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что AB = A1B1, CD = C1D1 и ∠ADC = ∠A1D1C1. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 240]
Саша разрезал бумажный треугольник на два треугольника. Затем он каждую минуту резал на два треугольника один из полученных ранее треугольников. Через некоторое время, не меньшее часа, все полученные Сашей треугольники оказались равными. Укажите все исходные треугольники, для которых возможна такая ситуация.
В равностороннем треугольнике ABC на стороне AB взята точка D так, что AD = AB/n.
Точки P1, P2, ..., Pn–1 делят сторону BC равностороннего треугольника ABC на n равных частей: BP1 = P1P2 = ... = Pn–lC. Точка M выбрана на стороне AC так, что AM = BP1. а) n = 3; б) n – произвольное натуральное число.
Диагональ AC выпуклого четырёхугольника ABCD делится точкой пересечения диагоналей пополам. Известно, что ∠ADB = 2∠CBD. На диагонали BD нашлась точка K, для которой CK = KD + AD. Докажите, что ∠BKC = 2∠ABD.
В треугольниках ABC и A1B1C1 проведены биссектрисы CD и C1D1 соответственно. Известно, что AB = A1B1, CD = C1D1 и ∠ADC = ∠A1D1C1.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 240] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|