ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите справедливость равенства

| A1 $\displaystyle \cup$ A2 $\displaystyle \cup$...$\displaystyle \cup$ An| = | A1| +...+ | An| - | A1 $\displaystyle \cap$ A2| -
         - | A1 $\displaystyle \cap$ A3| -...- | An - 1 $\displaystyle \cap$ An| +...+ (- 1)n - 1| A1 $\displaystyle \cap$ A2 $\displaystyle \cap$...$\displaystyle \cap$ An|,

где через | A| обозначено количество элементов множества A.

   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 240]      



Задача 105104

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9,10

Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

Прислать комментарий     Решение

Задача 108109

Темы:   [ Пересекающиеся окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.

Докажите, что  ∠APB = ∠CQD.

Прислать комментарий     Решение

Задача 108680

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Дан равносторонний треугольник ABC. Сторона BC разделена на три равные части точками K и L, а точка M делит сторону AC в отношении  1 : 2,  считая от вершины A. Докажите, что сумма углов AKM и ALM равна 30°.

Прислать комментарий     Решение

Задача 115337

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что  AC = BD,  2∠ACF = ∠ADB,  2∠CAF = ∠CDB.
Докажите, что  AD = CE.

Прислать комментарий     Решение

Задача 115893

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9,10,11

Из вершины B треугольника ABC опущен перпендикуляр BM на биссектрису угла C. Пусть K – точка касания вписанной окружности со стороной BC.
Найдите угол MKB, если известно, что  ∠BAC = α.

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 240]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .