Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 240]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

Две окружности пересекаются в точках P и Q. Прямая пересекает эти окружности последовательно в точках A, B, C и D, как показано на рисунке.
Докажите, что ∠
APB = ∠
CQD.
Дан равносторонний треугольник ABC. Сторона BC разделена на три равные части точками K и L, а точка M делит сторону AC в отношении 1 : 2, считая от вершины A. Докажите, что сумма углов AKM и ALM равна 30°.
На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что
AC = BD, 2∠ACF = ∠ADB, 2∠CAF = ∠CDB.
Докажите, что AD = CE.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Из вершины B треугольника ABC опущен перпендикуляр BM на биссектрису угла C. Пусть K – точка касания вписанной окружности со стороной BC.
Найдите угол MKB, если известно, что ∠BAC = α.
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 240]