ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Сонкин М.

Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.

   Решение

Задачи

Страница: << 135 136 137 138 139 140 141 >> [Всего задач: 769]      



Задача 108110

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
[ Признаки и свойства касательной ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Сонкин М.

Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.

Прислать комментарий     Решение

Задача 108151

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства параллелограмма ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Описанная окружность треугольника AOB касается прямой BC.
Докажите, что описанная окружность треугольника BOC касается прямой CD.

Прислать комментарий     Решение

Задача 53228

Темы:   [ Вписанные и описанные окружности ]
[ Теорема косинусов ]
[ Теорема синусов ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC косинус угла BAC равен $ {\frac{1}{2}}$, AB = 2, AC = 3. Точка D лежит на продолжении стороны AC, причём C находится между A и D, CD = 3. Найдите отношение радиуса окружности, описанной около треугольника ABC, к радиусу окружности, вписанной в треугольник ABD.

Прислать комментарий     Решение


Задача 53270

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3+
Классы: 8,9

В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.

Прислать комментарий     Решение


Задача 54605

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Концентрические окружности ]
[ Диаметр, основные свойства ]
[ Признаки и свойства касательной ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин всех хорд данной окружности, равных данному отрезку.
Прислать комментарий     Решение


Страница: << 135 136 137 138 139 140 141 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .