ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.

   Решение

Задачи

Страница: << 12 13 14 15 16 17 18 [Всего задач: 88]      



Задача 58198

Темы:   [ Раскраски ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
[ Правильные многоугольники ]
[ Шестиугольники ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 8,9

Точки сторон правильного треугольника раскрашены в два цвета. Докажите, что найдётся прямоугольный треугольник с вершинами одного цвета.

Прислать комментарий     Решение

Задача 56846

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные проекции ]
[ Векторы помогают решить задачу ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Шестиугольники ]
Сложность: 8+
Классы: 9,10,11

Медианы треугольника ABC разрезают его на 6 треугольников. Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности.
Прислать комментарий     Решение


Задача 108119

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Шестиугольники ]
Сложность: 4-
Классы: 8,9

Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 [Всего задач: 88]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .