Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 603]
|
|
Сложность: 4 Классы: 7,8,9
|
В остроугольном треугольнике расстояние от середины каждой стороны до
противоположной вершины равно сумме расстояний от неё до сторон треугольника.
Докажите, что этот треугольник – равносторонний.
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется треугольник ABC. На луче BA отложим точку A1, так что отрезок BA1 равен BC. На луче CA отложим точку A2, так что отрезок C2 равен BC. Аналогично построим точки B1, B2 и C1, C2. Докажите, что прямые A1A2, B1B 2, C1C2 параллельны.
На боковых сторонах AB и BC равнобедренного треугольника ABC с углом 44° при вершине взяты такие точки M и N, что AM = BN = AC. Точка X на луче CA такова, что MX = AB Найдите угол MXN.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC?
|
|
Сложность: 4+ Классы: 9,10,11
|
Серединный перпендикуляр к стороне AC треугольника ABC
пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.
Страница:
<< 109 110 111 112
113 114 115 >> [Всего задач: 603]