ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Серединный перпендикуляр к стороне AC треугольника ABC пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 373]      



Задача 58004

Тема:   [ Композиции гомотетий ]
Сложность: 4+
Классы: 9,10,11

Трапеции ABCD и APQD имеют общее основание AD, причем длины всех их оснований попарно различны. Докажите, что на одной прямой лежат точки пересечения следующих пар прямых:
а) AB и CD, AP и DQ, BP и CQ;
б) AB и CD, AQ и DP, BQ и CP.
Прислать комментарий     Решение


Задача 58009

Тема:   [ Поворотная гомотетия ]
Сложность: 4+
Классы: 9

Даны две неконцентрические окружности S1 и S2. Докажите, что существуют ровно две поворотные гомотетии с углом поворота 90o, переводящие S1 в S2.
Прислать комментарий     Решение


Задача 58030

Тема:   [ Композиции гомотетий ]
Сложность: 4+
Классы: 9

а) На сторонах треугольника ABC построены собственно подобные треугольники A1BC, CAB1 и BC1A. Пусть A2, B2 и C2 — соответственные точки этих треугольников. Докажите, что $ \triangle$A2B2C2 $ \sim$ $ \triangle$A1BC.
б) Докажите, что центры правильных треугольников, построенных внешним (внутренним) образом на сторонах треугольника ABC, образуют правильный треугольник.
Прислать комментарий     Решение


Задача 108217

Темы:   [ Поворотная гомотетия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9,10,11

Серединный перпендикуляр к стороне AC треугольника ABC пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.

Прислать комментарий     Решение

Задача 55780

Темы:   [ Гомотетия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9

В четырёхугольнике ABCD стороны AB и CD равны, причём лучи AB и DC пересекаются в точке O. Докажите, что прямая, проходящая через середины диагоналей, перпендикулярна биссектрисе угла AOD.

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 373]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .