ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В четырёхугольнике ABCD углы A и C равны. Биссектриса угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 207]      



Задача 53646

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Периметр треугольника ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Биссектрисы треугольника ABC пересекаются в точке O. Через точку O проходят две прямые, которые параллельны прямым AB и AC и пересекаются с BC в точках D и E. Докажите, что периметр треугольника OED равен отрезку BC.

Прислать комментарий     Решение

Задача 54061

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства касательной ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Прямая касается двух окружностей в точках A и B. Линия центров пересекает первую окружность в точках E и C, а вторую – в точках D и F.
Докажите, что прямая AC либо параллельна, либо перпендикулярна BD.

Прислать комментарий     Решение

Задача 98496

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Углы между биссектрисами ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Между двумя параллельными прямыми расположили окружность радиуса 1, касающуюся обеих прямых, и равнобедренный треугольник, основание которого лежит на одной из прямых, а вершина – на другой. Известно, что треугольник и окружность имеют ровно одну общую точку и что эта точка лежит на вписанной окружности треугольника. Найдите радиус вписанной окружности треугольника.

Прислать комментарий     Решение

Задача 108228

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Четырехугольники (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 7,8,9

В четырёхугольнике ABCD углы A и C равны. Биссектриса угла B пересекает прямую AD в точке P. Перпендикуляр к BP, проходящий через точку A, пересекает прямую BC в точке Q. Докажите, что прямые PQ и CD параллельны.

Прислать комментарий     Решение

Задача 108235

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AB = BC)  на стороне AB выбрана точка D, и вокруг треугольников ADC и BDC описаны окружности S1 и S2 соответственно. Касательная, проведённая к S1 в точке D, пересекает второй раз окружность S2 в точке M. Докажите, что  BM || AC.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .