ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC на стороне AC нашлись такие точки D и E , что AB=AD и BE=EC ( E между A и D ). Точка F – середина дуги BC (не содержащей точки A ) окружности, описанной около треугольника ABC . Докажите, что точки B , E , D и F лежат на одной окружности.

   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 83]      



Задача 108240

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол равен половине центрального ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

В треугольнике ABC на стороне AC нашлись такие точки D и E , что AB=AD и BE=EC ( E между A и D ). Точка F – середина дуги BC (не содержащей точки A ) окружности, описанной около треугольника ABC . Докажите, что точки B , E , D и F лежат на одной окружности.
Прислать комментарий     Решение


Задача 108893

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательная окружность ]
[ Средняя линия треугольника ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

Точки K и L – середины диагоналей соответственно AC и BD выпуклого четырёхугольника ABCD . Прямая KL пересекает стороны AD и BC в точках X и Y соответственно. Описанная окружность треугольника AKX пересекает сторону AB в точке M . Докажите, что описанная окружность треугольника BLY тоже проходит через точку M .
Прислать комментарий     Решение


Задача 108951

Темы:   [ Углы между биссектрисами ]
[ Вспомогательная окружность ]
[ Вписанные четырехугольники (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

AA1 и CC1 – высоты остроугольного треугольника ABC . Прямая, проходящая через центры вписанных окружностей треугольников AA1C и CC1A пересекает стороны AB и BC треугольника ABC в точках X и Y . Докажите, что BX=BY .
Прислать комментарий     Решение


Задача 109516

Темы:   [ Свойства симметрии и центра симметрии ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.
Прислать комментарий     Решение


Задача 108050

Темы:   [ Неравенство треугольника ]
[ Вспомогательная окружность ]
[ Симметрия помогает решить задачу ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 8,9

Точка P , лежащая на большей из двух дуг AB окружности, соединена с серединой M меньшей дуги AB . Хорды PL и PM пересекают хорду AB соответственно в её середине K и в некоторой точке N . Сравните отрезки KL и MN .
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .