ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Параллельный перенос
>>
Перенос помогает решить задачу
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD). |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 62]
На координатной плоскости нарисованы графики двух приведённых квадратных трёхчленов и две непараллельные прямые l1 и l2. Известно, что отрезки, высекаемые графиками на l1, равны, и отрезки, высекаемые графиками на l2, также равны. Докажите, что графики трёхчленов совпадают.
Один из двух приведённых квадратных трёхчленов имеет два корня, меньших 1000, другой – два корня, больших 1000. Может ли сумма этих трёхчленов иметь один корень меньший 1000, а другой – больший 1000?
В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD).
Докажите, что существует многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 2 : 1.
С помощью циркуля и линейки постройте четырёхугольник ABCD по четырём сторонам и углу между AB и CD.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 62] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|