Страница: 1
2 3 4 5 6 7 >> [Всего задач: 32]
Внутри окружности с центром
O дана точка
A. Найдите точку
M
окружности, для которой угол
OMA максимален.
Если на плоскости заданы пять точек, то, рассматривая всевозможные
тройки этих точек, можно образовать 30 углов. Обозначим наименьший из
этих углов
. Найдите наибольшее значение
.
|
|
Сложность: 3 Классы: 7,8,9
|
Город Нью-Васюки имеет форму квадрата со стороной 5 км. Улицы делят его на кварталы, являющиеся квадратами со стороной 200 м. Какую наибольшую площадь можно обойти, пройдя по улицам Нью-Васюков 10 км и вернувшись в исходную точку?
|
|
Сложность: 3+ Классы: 9,10,11
|
Четыре села находятся в вершинах квадрата со стороной 1 км. Для того, чтобы можно было проехать из каждого села в каждое, проложили две прямолинейные дороги вдоль диагоналей данного квадрата. Можно ли проложить сеть дорог между селами иным образом так, чтобы их суммарная длина уменьшилась, но по-прежнему из каждого села можно было проехать в каждое?
|
|
Сложность: 3+ Классы: 10,11
|
На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 32]