ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Углы, опирающиеся на равные дуги и равные хорды
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В окружность радиуса 5 вписан квадрат. На окружности отмечена точка, расстояние от которой до одной из вершин квадрата равно 6. Найдите расстояния от этой точки до трёх других вершин квадрата. Решение |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 499]
Продолжения биссектрис остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что высоты треугольника A1B1C1 лежат на прямых AA1, BB1иCC1.
AM — биссектриса треугольника ABC. Точка D принадлежит стороне AC, причём DMC = BAC. Докажите, что BM = MD.
В окружность радиуса 5 вписан квадрат. На окружности отмечена точка, расстояние от которой до одной из вершин квадрата равно 6. Найдите расстояния от этой точки до трёх других вершин квадрата.
Вокруг квадрата со стороной 3 описана окружность. На окружности отмечена точка, расстояние от которой до одной из вершин квадрата равно 2. Найдите расстояния от этой точки до трёх других вершин квадрата.
На доске была нарисована окружность с отмеченным центром, вписанный в неё четырёхугольник и окружность, вписанная в него, также с отмеченным центром. Затем стерли четырёхугольник (сохранив одну вершину) и вписанную окружность (сохранив её центр). Восстановите какую-нибудь из стертых вершин четырёхугольника, пользуясь только линейкой и проведя не более шести линий.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|