ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)

Вниз   Решение


В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{3}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 4 и 6 соответственно. Найдите радиус окружности, вписанной в треугольник ABC.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 109]      



Задача 54695

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
Сложность: 4-
Классы: 8,9

Точка O — центр окружности, вписанной в треугольник ABC. Известно, что BC = a, AC = b, $ \angle$AOB = 120o. Найдите сторону AB.

Прислать комментарий     Решение


Задача 108489

Темы:   [ Углы между биссектрисами ]
[ Теорема синусов ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC биссектрисы пересекаются в точке O. Прямая AO пересекается с окружностью, описанной около треугольника OBC, в точках O и M. Найдите OM, если BC = 2, а угол A равен 30o.

Прислать комментарий     Решение


Задача 108513

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{3}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 4 и 6 соответственно. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 108514

Темы:   [ Углы между биссектрисами ]
[ Теорема косинусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC угол при вершине B равен $ {\frac{\pi}{2}}$, а отрезки, соединяющие центр вписанной окружности с вершинами A и C, равны 3 и $ \sqrt{2}$ соответственно. Найдите радиус окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение


Задача 53393

Темы:   [ Углы между биссектрисами ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Свойства биссектрис, конкуррентность ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC с углом A, равным 120°, биссектрисы AA1, BB1 и CC1 пересекаются в точке O. Докажите, что  ∠A1C1O = 30°.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 109]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .