ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ребро правильного тетраэдра ABCD равно a . На ребре BD расположена точка M так, что 3DM=a . Прямой круговой конус расположен так, что его вершина находится на середине ребра AC , а окружность основания проходит через точку M и пересекает рёбра AB и BC . Найдите радиус основания этого конуса. Дан треугольник АВС. Точка О1 – центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке. Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2
|
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501]
Дано n окружностей: O1, O2,...On, проходящих через одну точку O. Вторые точки пересечения O1 с O2, O2 с O3,..., O3 с O1 обозначим соответственно через A1, A2,..., An. На O1 берем произвольную точку B1. Если B1 не совпадает с A1, то проводим через B1 и A1 прямую до второго пересечения с O2 в точке B2. Если B2 не совпадает с A2, то проводим через B2 и A2 прямую до второго пересечения с O3 в точке B3. Продолжая таким образом, мы получим точку Bn на окружности On. Если On не совпадает с An, то проводим через Bn и An прямую до второго пересечения с O1 в точке Bn + 1. Докажите, что Bn + 1 совпадает с B1.
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2
Длины трёх сторон четырёхугольника, вписанного в окружность радиуса 2,
Одинаковы и равны
В окружности проведены хорды AB и BC, причём
AB =
Биссектрисы внутренних углов треугольника продолжены до точек пересечения с описанной около треугольника окружностью, отличных от вершин исходного треугольника. В результате попарного соединения этих точек получился новый треугольник. Известно, что углы исходного треугольника равны 30o, 60o и 90o, а его площадь равна 2. Найдите площадь нового треугольника.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 501]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке