ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между апофемой и плоскостью соседней боковой грани.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 185]      



Задача 108796

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 8,9

Докажите, что в любой правильной пирамиде углы между соседними боковыми гранями равны.
Прислать комментарий     Решение


Задача 108815

Темы:   [ Линейные зависимости векторов ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 8,9

Все рёбра правильной четырёхугольной пирамиды равны. Найдите угол между апофемой и плоскостью соседней боковой грани.
Прислать комментарий     Решение


Задача 109285

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Противоположные боковые грани правильной четырёхугольной пирамиды взаимно перпендикулярны. Найдите угол между апофемой и соседней боковой гранью.
Прислать комментарий     Решение


Задача 110276

Темы:   [ Правильная пирамида ]
[ Углы между прямыми и плоскостями ]
[ Двугранный угол ]
Сложность: 4
Классы: 10,11

Все двугранные углы при основании пирамиды равны α , а углы, образуемые боковыми рёбрами с плоскостью основания, равны β . Известно, что tg α = k tg β . Сколько сторон имеет основание пирамиды, если k = 2 ? Какие значения может принимать величина k ?
Прислать комментарий     Решение


Задача 110442

Темы:   [ Площадь и объем (задачи на экстремум) ]
[ Углы между прямыми и плоскостями ]
Сложность: 4
Классы: 10,11

Основанием пирамиды служит треугольник со сторонами 5, 12 и 13, а её высота образует с высотами боковых граней (опущенных из той же вершины) одинаковые углы, не меньшие 30o . Какой наибольший объём может иметь такая пирамида?
Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .