ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Один из углов треугольника равен α. Найдите угол между прямыми, содержащими высоты, проведённые из вершин двух других углов.
Основание правильной четырёхугольной пирамиды – квадрат
со стороной 8. Высота пирамиды равна 9. Через сторону основания
проведена плоскость, образующая с плоскостью основания угол,
равный arctg Апофема правильной четырёхугольной пирамиды равна a , а противоположные боковые грани пирамиды взаимно перпендикулярны. Найдите радиусы описанной и вписанной сфер. На прямой выбрано 100 множеств A1, A2, .. , A100 , каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств A1, A2, .. , A100 является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком). В треугольнике ABC проведена биссектриса BL. Известно, что BL = AB. На продолжении BL за точку L выбрана точка K, причём ∠BAK + ∠BAL = 180°. Докажите, что BK = BC. |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 5294]
В треугольнике ABC проведена биссектриса BL. Известно, что BL = AB. На продолжении BL за точку L выбрана точка K, причём ∠BAK + ∠BAL = 180°. Докажите, что BK = BC.
В трапеции ABCD с основаниями AD и BC угол при вершине A – прямой, E – точка пересечения диагоналей, F – проекция точки E на сторону AB .
Пусть вневписанные окружности треугольника, касающиеся сторон AC и BC , касаются прямой AB в точках P и Q соответственно. Докажите, что середина стороны AB совпадает с серединой отрезка PQ .
Дан остроугольный равнобедренный треугольник ABC ( AB=BC ); E – точка пересечения перпендикуляра к стороне BC , восставленного в точке B , и перпендикуляра к основанию AC , восставленного в точке C ; D – точка пересечения перпендикуляра к стороне AB , восставленного в точке A , с продолжением стороны BC . На продолжении основания AC за точку C отметили точку F , для которой CF=AD . Докажите, что EF=ED .
Стороны треугольника a,b и c .
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 5294]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке