Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 133]
|
|
Сложность: 3+ Классы: 9,10,11
|
Какому условию должны удовлетворять коэффициенты a, b, c уравнения x³ + ax² + bx + c, чтобы три его корня составляли арифметическую прогрессию?
|
|
Сложность: 3+ Классы: 8,9,10
|
Из таблицы
выбраны
a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.
Найдите все возрастающие конечные арифметические прогрессии, которые состоят из простых чисел и у которых количество членов больше чем разность прогрессии.
|
|
Сложность: 3+ Классы: 10,11
|
Функция f(x) такова, что для всех значений x выполняется равенство f(x + 1) = f(x) + 2x + 3. Известно, что f(0) = 1. Найдите f(2012).
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Имеются
чашечные весы, любые гири и десять мешков с монетами. Все монеты во всех
мешках одинаковы по внешнему виду, но в одном из мешков все монеты
фальшивые и каждая весит по 15 г, а в остальных девяти мешках все монеты
настоящие и каждая весит по 20 г. Как при помощи
одного
взвешивания определить, в каком мешке фальшивые монеты?
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 133]