ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
    a sin x + b cos x + c = 0,   2a tg x + b ctg x + 2c = 0
имеет решение.

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 117]      



Задача 60946

Темы:   [ Фазовая плоскость коэффициентов ]
[ Квадратные уравнения. Теорема Виета ]
[ Исследование квадратного трехчлена ]
Сложность: 4-
Классы: 8,9,10

Обозначим корни уравнения  x² + px + q = 0  через x1, x2. Нарисуйте на фазовой плоскости Opq множества точек  M(, q),  которые задаются условиями:
а)  x1 = 0,  x2 = 1;     б)  x1 ≤ 0,  x2 ≥ 2;     в)  x1 = x2;     г)  – 1 ≤ x1 ≤ 0,  1 ≤ x2 ≤ 2.

Прислать комментарий     Решение

Задача 109177

Темы:   [ Тригонометрические уравнения ]
[ Методы решения задач с параметром ]
[ Исследование квадратного трехчлена ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
    a sin x + b cos x + c = 0,   2a tg x + b ctg x + 2c = 0
имеет решение.

Прислать комментарий     Решение

Задача 110100

Темы:   [ Целочисленные и целозначные многочлены ]
[ Простые числа и их свойства ]
[ Исследование квадратного трехчлена ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Приведённый квадратный трёхчлен с целыми коэффициентами в трёх последовательных целых точках принимает простые значения.
Докажите, что он принимает простое значение по крайней мере еще в одной целой точке.

Прислать комментарий     Решение

Задача 115992

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Разложение на множители ]
[ Исследование квадратного трехчлена ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Найдите наименьшее значение  x² + y²,  если  x2y² + 6x + 4y + 5 = 0.

Прислать комментарий     Решение

Задача 109528

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Теория игр (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 8,9,10,11

На доске написано n выражений вида  *x² + *x + * = 0  (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .