ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть   = ,  где    – несократимая дробь.
Докажите, что неравенство  bn+1 < bn выполнено для бесконечного числа натуральных n.

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 [Всего задач: 275]      



Задача 109193

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
[ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9

Пусть   = ,  где    – несократимая дробь.
Докажите, что неравенство  bn+1 < bn выполнено для бесконечного числа натуральных n.

Прислать комментарий     Решение

Задача 111691

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4
Классы: 8,9,10,11

На столе лежат  N > 2  кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.

Прислать комментарий     Решение

Задача 105168

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
[ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4+
Классы: 8,9,10

Дано равенство  (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1),  где a, n, l и все показатели степени – натуральные числа, причём  a > 1.
Найдите все возможные значения числа a.

Прислать комментарий     Решение

Задача 57089

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
[ НОД и НОК. Взаимная простота ]
Сложность: 5+
Классы: 9

Докажите, что если число n не является степенью простого числа, то существует выпуклый n-угольник со сторонами длиной 1, 2,..., n, все углы которого равны.

Прислать комментарий     Решение

Задача 111898

Темы:   [ Разбиения на пары и группы; биекции ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
[ Деление с остатком ]
[ НОД и НОК. Взаимная простота ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 6,7,8,9,10

  а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды, пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные сундуки, дать точный ответ на этот вопрос?
  б) А если сундуков было восемь, а Скупой рыцарь мог разложить поровну монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?
Прислать комментарий     Решение


Страница: << 49 50 51 52 53 54 55 [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .