ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя?

   Решение

Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 22]      



Задача 78000

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Из квадрата размером 3 на 3 вырезать одну фигуру, которая представляет развёртку полной поверхности куба, длина ребра которого равна 1.
Прислать комментарий     Решение


Задача 87052

Темы:   [ Свойства разверток ]
[ Объем тетраэдра и пирамиды ]
Сложность: 3
Классы: 8,9

Известно, что если поверхность некоторого тетраэдра ABCD разрезать вдоль рёбер AD , BD и CD , то его развёрткой на плоскость ABC будет квадрат со стороной a . Найдите объём тетраэдра.
Прислать комментарий     Решение


Задача 77925

Тема:   [ Свойства разверток ]
Сложность: 3+
Классы: 10,11

Имеются две концентрические окружности. Вокруг меньшей из них описан многоугольник, целиком находящийся внутри большей окружности. Из общего центра на стороны многоугольника опущены перпендикуляры, которые продолжены до пересечения с большей окружностью; каждая из полученных точек пересечения соединена с концами соответствующей стороны многоугольника. При каком условии построенный так звёздчатый многоугольник будет развёрткой пирамиды?
Прислать комментарий     Решение


Задача 109360

Темы:   [ Свойства разверток ]
[ Тетраэдр (прочее) ]
[ Против большей стороны лежит больший угол ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4-
Классы: 10,11

Может ли квадрат являться развёрткой некоторой треугольной пирамиды?

Прислать комментарий     Решение

Задача 109358

Темы:   [ Свойства разверток ]
[ Неравенства с трехгранными углами ]
Сложность: 4
Классы: 10,11

Плоский угол при вершине правильной треугольной пирамиды ABCD с основанием ABC равен α . Правильная усечённая пирамида ABCA1B1C1 разрезана по пяти рёбрам: A1B1 , B1C1 , C1C , CA и AB . После чего эту пирамиду развернули на плоскость. При каких значениях α получившаяся развёртка будет обязательно накрывать сама себя?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .