Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=3 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .

Вниз   Решение


Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

ВверхВниз   Решение


Решите задачу 5.85, а) с помощью теоремы Менелая.

ВверхВниз   Решение


а) Серединный перпендикуляр к биссектрисе AD треугольника ABC пересекает прямую BC в точке E. Докажите, что  BE : CE = c2 : b2.
б) Докажите, что точки пересечения серединных перпендикуляров к биссектрисам треугольников и продолжений соответствующих сторон лежат на одной прямой.

ВверхВниз   Решение


На прямых BC, CA и AB взяты точки A1, B1 и C1, причем точки A1, B1 и C1 лежат на одной прямой. Прямые, симметричные прямым AA1, BB1 и CC1 относительно соответствующих биссектрис треугольника ABC, пересекают прямые BC, CA и AB в точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат на одной прямой.

ВверхВниз   Решение


В углу шахматной доски размером n×n полей стоит ладья. При каких n, чередуя горизонтальные и вертикальные ходы, она может за n² ходов побывать на всех полях доски и вернуться на место? (Учитываются только поля, на которых ладья останавливалась, а не те, над которыми она проносилась во время хода.)

ВверхВниз   Решение


Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством:    – простое при всех  k = 1, 2, ..., n?

ВверхВниз   Решение


Через вершины B , C и D трапеции ABCD ( AD|| BC ) проведена окружность. Известно, что окружность касается прямой AB , а её центр лежит на диагонали BD . Найдите периметр трапеции ABCD , если BC=9 , AD=25 .

ВверхВниз   Решение


Автор: Фольклор

От Майкопа до Белореченска 24 км. Три друга должны добраться: двое из Майкопа в Белореченск, а третий – из Белореченска в Майкоп. У них есть один велосипед, первоначально находящийся в Майкопе. Каждый из друзей может идти (со скоростью не более 6 км/ч) и ехать на велосипеде (со скоростью не более 18 км/ч). Оставлять велосипед без присмотра нельзя. Докажите, что через 2 часа 40 минут все трое друзей могут оказаться в пунктах назначения. Ехать на велосипеде вдвоём нельзя.

ВверхВниз   Решение


Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?

ВверхВниз   Решение


Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?

ВверхВниз   Решение


Можно ли в клетках таблицы 19×19 отметить несколько клеток так, чтобы во всех квадратах 10×10 было разное количество отмеченных клеток?

ВверхВниз   Решение


Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.

ВверхВниз   Решение


Автор: Фольклор

В шахматном турнире было 12 участников (каждый сыграл с каждым по одному разу). По итогам турнира оказалось, что есть 9 участников, каждый из которых набрал не более 4 очков. Известно, что Петя набрал ровно 9 очков. Как он сыграл с каждым из двух остальных шахматистов? (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)

ВверхВниз   Решение


Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?

Вверх   Решение

Задачи

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1113]      



Задача 109019

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Из таблицы

выбраны a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

Прислать комментарий     Решение

Задача 109430

Темы:   [ Задачи на работу ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 3+
Классы: 7,8,9

У Алёны есть мобильный телефон, заряда аккумулятора которого хватает на 6 часов разговора или 210 часов ожидания. Когда Алёна садилась в поезд, телефон был полностью заряжен, а когда она выходила из поезда, телефон разрядился. Сколько времени она ехала на поезде, если известно, что Алёна говорила по телефону ровно половину времени поездки?

Прислать комментарий     Решение

Задача 109467

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?

Прислать комментарий     Решение

Задача 109502

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

В футбольном чемпионате участвовали 16 команд. Каждая команда сыграла с каждой из остальных по одному разу, за победу давалось 3 очка, за ничью – 1 очко, за поражение – 0. Назовём команду успешной, если она набрала хотя бы половину от наибольшего возможного количества очков. Какое наибольшее количество успешных команд могло быть в турнире?

Прислать комментарий     Решение

Задача 109527

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Какое наибольшее число фишек можно поставить на клетки шахматной доски так, чтобы на каждой горизонтали, вертикали и диагонали (не только на главных) находилось чётное число фишек?

Прислать комментарий     Решение

Страница: << 95 96 97 98 99 100 101 >> [Всего задач: 1113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .