ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Логика и теория множеств
>>
Теория алгоритмов
>>
Теория игр
>>
Теория игр (прочее)
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или - , второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать? Решение |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 165]
Тот, после чьего хода в какой-нибудь банке оказалось ровно 1999 орехов, проигрывает. Докажите, что Винни-Пух и Пятачок могут, договорившись, играть так, чтобы Кролик проиграл.
В одном из узлов шестиугольника со стороной n , разбитого на правильные треугольники (см. рис.) , стоит фишка. Двое играющих по очереди передвигают ее в один из соседних узлов, причем запрещается ходить в узел, в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода. Кто выигрывает при правильной игре?
На столе лежат n спичек (n > 1). Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до n – 1, а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш.
На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты, и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 165] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|