ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$. |
Страница: 1 [Всего задач: 5]
Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы
Докажите, что при всех $x$, $0 < x < \pi/3$, справедливо неравенство $\sin 2x + \cos x > 1$.
Существуют ли такие значения a и b, при которых уравнение х4 – 4х3 + 6х² + aх + b = 0 имеет четыре различных действительных корня?
Приведенные квадратные трёхчлены f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах.
Положительные числа х1, ..., хk удовлетворяют неравенствам
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке