ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Высоты тетраэдра пересекаются в одной точке.
Докажите, что эта точка, основание одной из высот и три точки, делящие другие высоты в отношении   2 : 1,  считая от вершин, лежат на одной сфере.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



Задача 66998

Темы:   [ Окружности на сфере ]
[ Сферическая геометрия и телесные углы ]
[ Сферы (прочее) ]
Сложность: 4
Классы: 10,11

На сфере радиуса 1 дан треугольник, стороны которого – дуги трёх различных окружностей радиуса 1 с центром в центре сферы, имеющие длины меньше $\pi$, а площадь равна четверти площади сферы. Докажите, что четырьмя копиями такого треугольника можно покрыть всю сферу.

Прислать комментарий     Решение

Задача 109601

Темы:   [ Высота пирамиды (тетраэдра) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Сферы (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 10,11

Высоты тетраэдра пересекаются в одной точке.
Докажите, что эта точка, основание одной из высот и три точки, делящие другие высоты в отношении   2 : 1,  считая от вершин, лежат на одной сфере.

Прислать комментарий     Решение

Задача 66912

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Окружности на сфере ]
[ Сферы (прочее) ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 5
Классы: 10,11

Дано целое $n>2$. На сфере радиуса 1 требуется расположить $n$ попарно не пересекающихся дуг больших окружностей, все дуги равной длины $\alpha$. Докажите, что

а) при любом $\alpha<\pi+\frac{2\pi}n$ это возможно;

б) при любом $\alpha>\pi+\frac{2\pi}n$ это невозможно.

Прислать комментарий     Решение

Задача 98264

Темы:   [ Уравнения в целых числах ]
[ Расстояние между двумя точками. Уравнение сферы ]
[ Рациональные и иррациональные числа ]
[ Сферы (прочее) ]
Сложность: 4-
Классы: 10,11

Автор: Рубин А.

Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)

 
Прислать комментарий     Решение

Задача 110086

Темы:   [ Четырехугольная пирамида ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанный угол, опирающийся на диаметр ]
[ Сферы (прочее) ]
Сложность: 4
Классы: 10,11

Высота четырехугольной пирамиды SABCD проходит через точку пересечения диагоналей ее основания ABCD . Из вершин основания опущены перпендикуляры AA1 , BB1 , CC1 , DD1 на прямые SC , SD , SA и SB соответственно. Оказалось, что точки S , A1 , B1 , C1 , D1 различны и лежат на одной сфере. Докажите, что прямые AA1 , BB1 , CC1 , DD1 проходят через одну точку.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .