ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа k, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес k самых тяжелых монет из первой кучки не больше суммарного веса k самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше x, на монету веса x (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число x.

   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 737]      



Задача 109550

Темы:   [ Теория игр (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9

На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске: первый – знак + или - , второй – одно из натуральных чисел от 1 до 1993. Игроки делают по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой наибольший выигрыш он может себе гарантировать?
Прислать комментарий     Решение


Задача 109637

Темы:   [ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 8,9,10

На столе лежат две кучки монет. Известно, что суммарный вес монет из первой кучки равен суммарному весу монет из второй кучки, а для каждого натурального числа k, не превосходящего числа монет как в первой, так и во второй кучке, суммарный вес k самых тяжелых монет из первой кучки не больше суммарного веса k самых тяжелых монет из второй кучки. Докажите, что если заменить каждую монету, вес которой не меньше x, на монету веса x (в обеих кучках), то первая кучка монет окажется не легче второй, каково бы ни было положительное число x.

Прислать комментарий     Решение

Задача 109691

Тема:   [ Теория игр (прочее) ]
Сложность: 4
Классы: 7,8,9,10

Автор: Бахарев Ф.

На столе стоят три пустых банки из-под меда. Винни-Пух, Кролик и Пятачок по очереди кладут по одному ореху в одну из банок. Их порядковые номера до начала игры определяются жребием. При этом Винни может добавлять орех только в первую или вторую банку, Кролик – только во вторую или третью, а Пятачок – в первую или третью.
Тот, после чьего хода в какой-нибудь банке оказалось ровно 1999 орехов, проигрывает.
Докажите, что Винни-Пух и Пятачок могут, договорившись, играть так, чтобы Кролик проиграл.
Прислать комментарий     Решение


Задача 109718

Темы:   [ Взвешивания ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
[ Математическая логика (прочее) ]
Сложность: 4
Классы: 8,9,10

Имеются пять внешне одинаковых гирь с попарно различными массами. Разрешается выбрать любые три из них A, B и C и спросить, верно ли, что
m(A) < m(B) < m(C)  (через m(x) обозначена масса гири x). При этом даётся ответ "Да" или "Нет". Можно ли за девять вопросов гарантированно узнать, в каком порядке идут веса гирь?

Прислать комментарий     Решение

Задача 109895

Темы:   [ Теория игр (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 7,8,9

Автор: Дужин Ф.С.



В одном из узлов шестиугольника со стороной n , разбитого на правильные треугольники (см. рис.) , стоит фишка. Двое играющих по очереди передвигают ее в один из соседних узлов, причем запрещается ходить в узел, в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода. Кто выигрывает при правильной игре?
Прислать комментарий     Решение

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .