ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа? |
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 418]
На плоскости расположено 20 точек, никакие три из которых не лежат на одной
прямой, из них 10 синих и 10 красных.
Бесконечная последовательность чисел xn определяется условиями: xn+1 = 1 – |1 – 2xn|, причём 0 ≤ x1 ≤ 1.
Дан многочлен P(x) с действительными коэффициентами. Бесконечная
последовательность различных натуральных чисел a1, a2, a3, ... такова, что
Пусть P(x) – многочлен со старшим коэффициентом 1, а последовательность целых чисел a1, a2, ... такова, что P(a1)= 0, P(a2) = a1, P(a3) = a2 и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)?
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?
Страница: << 65 66 67 68 69 70 71 >> [Всего задач: 418]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке