Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

На вертикальную ось надели несколько колес со спицами. Вид сверху изображен на левом рисунке.


После этого колеса повернули. Новый вид сверху изображен на рисунке справа.
Могло ли колес быть:  а) три;  б) два?

Вниз   Решение


На столе лежат три красные палочки разной длины, сумма длин которых равняется 30 см, и пять синих палочек разной длины, сумма длин которых тоже равняется 30 см. Можно ли распилить те и другие палочки так, чтобы потом можно было расположить их парами, причём в каждой паре палочки были бы одинаковой длины, но разного цвета?

ВверхВниз   Решение


Число 1/42 разложили в бесконечную десятичную дробь. Затем вычеркнули 1997-ю цифру после запятой, а все цифры, стоящие справа от вычеркнутой цифры, сдвинули на 1 влево. Какое число больше: новое или первоначальное?

ВверхВниз   Решение


Дан угол ABC и прямая l . Параллельно прямой l с помощью циркуля и линейки проведите прямую, на которой стороны угла ABC высекают отрезок, равный данному.

ВверхВниз   Решение


Дан треугольник со сторонами 3, 4 и 5. Построены три круга радиусами 1 с центрами в вершинах треугольника.
Найдите суммарную площадь частей кругов, заключённых внутри треугольника.

ВверхВниз   Решение


Найдите геометрическом место ортоцентров (точек пересечения высот) всевозможных треугольников, вписанных в данную окружность.

ВверхВниз   Решение


Рассмотрим равенства:

2 + $\displaystyle \sqrt{3}$ = $\displaystyle \sqrt{4}$ + $\displaystyle \sqrt{3}$,
(2 + $\displaystyle \sqrt{3}$)2 = $\displaystyle \sqrt{49}$ + $\displaystyle \sqrt{48}$,
(2 + $\displaystyle \sqrt{3}$)3 = $\displaystyle \sqrt{676}$ + $\displaystyle \sqrt{675}$,
(2 + $\displaystyle \sqrt{3}$)4 = $\displaystyle \sqrt{9409}$ + $\displaystyle \sqrt{9408}$.

Обобщите результат наблюдения и докажите возникшие у вас догадки.

ВверхВниз   Решение


В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Найдите AC, если известно, что  AM = 4,  BN = 9.

ВверхВниз   Решение


Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

ВверхВниз   Решение


Последовательность чисел a1, a2,..., an... образуется следующим образом:

a1 = a2 = 1; an = $\displaystyle {\frac{a_{n-1}^2+2}{a_{n-2}}}$        (n$\displaystyle \ge$3).

Доказать, что все числа в последовательности — целые.

ВверхВниз   Решение


Окружность радиуса 3 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 60o и 45o соответственно. Найдите площадь треугольника.

ВверхВниз   Решение


Доказать, что если в треугольнике ABC со стороной  BC = 1  радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.

ВверхВниз   Решение


Члены Государственной Думы образовали фракции так, что для любых двух фракций A и B (не обязательно различных) – тоже фракция (через обозначается множество всех членов Думы, не входящих в C ). Докажите, что для любых двух фракций A и B A B – также фракция.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150]      



Задача 76449

Темы:   [ Формула включения-исключения ]
[ Делимость чисел. Общие свойства ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?
Прислать комментарий     Решение


Задача 88137

Темы:   [ Объединение, пересечение и разность множеств ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 5,6,7

В детский сад завезли карточки для обучения чтению: на некоторых написано "МА", на остальных – "НЯ". Каждый ребёнок взял три карточки и стал составлять из них слова. Оказалось, что слово "МАМА" могут сложить из своих карточек 20 детей, слово "НЯНЯ" – 30 детей, а слово "МАНЯ" – 40 детей. У скольких ребят все три карточки одинаковы?

Прислать комментарий     Решение

Задача 109909

Темы:   [ Объединение, пересечение и разность множеств ]
[ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Члены Государственной Думы образовали фракции так, что для любых двух фракций A и B (не обязательно различных) – тоже фракция (через обозначается множество всех членов Думы, не входящих в C ). Докажите, что для любых двух фракций A и B A B – также фракция.
Прислать комментарий     Решение


Задача 111643

Темы:   [ Теория множеств (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 8,9

В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.

Прислать комментарий     Решение

Задача 60437

Тема:   [ Формула включения-исключения ]
Сложность: 3
Классы: 8,9,10

Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .