ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
  а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
  б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1A2 – точка пересечения прямой A1I с плоскостью B1C1D1B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.

Вниз   Решение


Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

ВверхВниз   Решение


Докажите, что при нечетном m выражение  (x + y + z)mxm – ym – zm  делится на  (x + y + z)3x3y3z3.

ВверхВниз   Решение


На прямой даны точки A, B и C. Известно, что  AB = 5,  а отрезок AC длиннее BC в полтора раза. Найдите отрезки AC и BC.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 150]      



Задача 32793

Тема:   [ Теория множеств (прочее) ]
Сложность: 3+
Классы: 7,8,9

В некотором царстве живут маги, чародеи и волшебники. Про них известно следующее: во-первых, не все маги являются чародеями, во-вторых, если волшебник не является чародеем, то он не маг. Правда ли, что не все маги -- волшебники?
Прислать комментарий     Решение


Задача 60440

Темы:   [ Формула включения-исключения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10

Сколько существует целых чисел от 1 до 1000000, которые не являются ни полным квадратом, ни полным кубом, ни четвёртой степенью?

Прислать комментарий     Решение

Задача 65697

Темы:   [ Теория множеств (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

В классе учится 23 человека. В течение года каждый ученик этого класса один раз праздновал день рождения, на который пришли некоторые (хотя бы один, но не все) его одноклассники. Могло ли оказаться, что каждые два ученика этого класса встретились на таких празднованиях одинаковое число раз? (Считается, что на каждом празднике встретились каждые два гостя, а также именинник встретился со всеми гостями.)

Прислать комментарий     Решение

Задача 98241

Тема:   [ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9

Автор: Шень А.Х.

Полоска 1×10 разбита на единичные квадраты. В квадраты записывают числа 1, 2, ..., 10. Сначала в один какой-нибудь квадрат записывают число 1, затем число 2 записывают в один из соседних квадратов, затем число 3 – в один из соседних с уже занятыми и т. д. (произвольными являются выбор первого квадрата и выбор соседа на каждом шагу). Сколькими способами это можно проделать?

Прислать комментарий     Решение

Задача 98400

Темы:   [ Формула включения-исключения ]
[ Куб ]
[ Подсчет двумя способами ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Куб со стороной 20 разбит на 8000 единичных кубиков, и в каждом кубике записано число. Известно, что в каждом столбике из 20 кубиков, параллельном ребру куба, сумма чисел равна 1 (рассматриваются столбики всех трёх направлений). В некотором кубике записано число 10. Через этот кубик проходит три слоя 1×20×20, параллельных граням куба. Найдите сумму всех чисел вне этих слоёв.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 150]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .