Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Трушин Б.

Сколько раз функция   f(x) = cos x cos x/2 cos x/3 ... cos x/2009   меняет знак на отрезке  [0, 2009π/2] ?

Вниз   Решение


Диагональ прямоугольного параллелепипеда образует с его рёбрами углы α , β и γ . Докажите, что cos2α + cos2β + cos2γ = 1 .

ВверхВниз   Решение


Автор: Бахарев Ф.

Окружность с центром I , вписанная в грань ABC треугольной пирамиды SABC , касается отрезков AB , BC , CA в точках D , E , F соответственно. На отрезках SA , SB , SC отмечены соответственно точки A' , B' , C' так, что AA'=AD , BB'=BE , CC'=CF ; S' – точка на описанной сфере пирамиды, диаметрально противоположная точке S . Известно, что SI является высотой пирамиды. Докажите, что точка S' равноудалена от точек A' , B' , C' .

ВверхВниз   Решение


Составьте уравнение окружности, проходящей через точки A(- 2;1), B(9;3) и C(1;7).

ВверхВниз   Решение


Даны точки A(0;0), B(4;0) и C(0;6). Составьте уравнение окружности, описанной около треугольника ABC.

ВверхВниз   Решение


Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.

ВверхВниз   Решение


Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими.

ВверхВниз   Решение


Автор: Храбров А.

Докажите неравенство   sinn2x + (sinnx – cosnx)² ≤ 1.

ВверхВниз   Решение


B остроугольном треугольнике ровно один из углов равен 60°. Докажите, что прямая, проходящая через центр описанной окружности и точку пересечения медиан треугольника, отсекает от него равносторонний треугольник.

ВверхВниз   Решение


В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 [Всего задач: 16]      



Задача 109947

Темы:   [ Выпуклые многоугольники ]
[ Пятиугольники ]
[ Биссектриса угла ]
[ Неравенства для остроугольных треугольников ]
[ Теорема Хелли ]
Сложность: 4+
Классы: 8,9,10

В пятиугольнике A1A2A3A4A5 проведены биссектрисы l1, l2, ..., l5 углов A1, A2, ..., A5 соответственно. Биссектрисы l1 и l2 пересекаются в точке B1, l2 и l3 – в точке B2 и т.д., ..., l5 и l1 пересекаются в точке B5. Может ли пятиугольник B1B2B3B4B5 оказаться выпуклым?

Прислать комментарий     Решение

Страница: << 1 2 3 4 [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .