ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?

   Решение

Задачи

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 598]      



Задача 109184

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
Сложность: 4
Классы: 8,9,10

Найти наименьшее натуральное число A, удовлетворяющее следующим условиям:
  а) его запись оканчивается цифрой 6;
  б) при перестановке цифры 6 из конца числа в его начало оно увеличивается в четыре раза.

Прислать комментарий     Решение

Задача 109612

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

Прислать комментарий     Решение

Задача 109756

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Деление с остатком ]
Сложность: 4
Классы: 8,9,10

Найдите наименьшее натуральное число, представимое в виде суммы 2002 натуральных слагаемых с одинаковой суммой цифр и в виде суммы 2003 натуральных слагаемых с одинаковой суммой цифр.

Прислать комментарий     Решение

Задача 109908

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Показательные неравенства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Обозначим через S(m) сумму цифр натурального числа m. Докажите, что существует бесконечно много таких натуральных n, что  S(3n) ≥ S(3n+1).

Прислать комментарий     Решение

Задача 109952

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Задачи с ограничениями ]
[ Признаки делимости (прочее) ]
Сложность: 4
Классы: 8,9

Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?

Прислать комментарий     Решение

Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .