Страница:
<< 141 142 143 144
145 146 147 >> [Всего задач: 1221]
|
|
Сложность: 4 Классы: 9,10,11
|
На отрезке [0, N] отмечены его концы и еще две точки так, что длины отрезков, на которые разбился отрезок [0, N], целые и взаимно просты в совокупности. Если нашлись такие две отмеченные точки A и B, что расстояние между ними кратно 3, то можно разделить отрезок AB на три равных части, отметить одну из точек деления и стереть одну из точек A, B. Верно ли, что за несколько таких действий можно отметить любую наперед заданную целую точку отрезка [0, N]?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В языке жителей Банановой Республики количество слов превышает количество букв в
их алфавите. Докажите, что найдется такое натуральное
k , для которого можно выбрать
k различных слов, в записи которых используется ровно
k различных букв.
|
|
Сложность: 4 Классы: 8,9,10
|
Набор пятизначных чисел
{N1 ,
Nk} таков, что любое
пятизначное число, все цифры которого идут в неубывающем порядке, совпадает хотя бы в
одном разряде хотя бы с одним их чисел
N1 ,
Nk .
Найдите наименьшее возможное значение
k .
|
|
Сложность: 4 Классы: 8,9,10,11
|
В гоночном турнире 12 этапов и n участников. После каждого этапа все
участники в зависимости от занятого места k получают баллы ak (числа ak натуральны, и a1 > a2 > ... > an). При каком наименьшем n устроитель турнира может выбрать числа a1, ..., an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
|
|
Сложность: 4 Классы: 7,8,9
|
В клетчатом квадрате 101×101 каждая клетка внутреннего квадрата 99×99 покрашена в один из десяти цветов (клетки, примыкающие к границе
квадрата, не покрашены). Может ли оказаться, что в каждом квадрате 3×3 в цвет центральной клетки покрашена еще ровно одна клетка?
Страница:
<< 141 142 143 144
145 146 147 >> [Всего задач: 1221]