ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Диаметр, хорды и секущие
>>
Хорды и секущие (прочее)
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске был нарисован четырехугольник, в который можно вписать и около которого можно описать окружность. В нем отметили центры этих окружностей и точку пересечения прямых, соединяющих середины противоположных сторон, после чего сам четырехугольник стерли. Восстановите его с помощью циркуля и линейки. Решение |
Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]
Хорда CD окружности с центром O перпендикулярна ее диаметру AB, а хорда AE делит пополам радиус OC.
На стороне AB треугольника ABC взяты такие точки X, Y, что AX = BY. Прямые CX и CY вторично пересекают описанную окружность треугольника в точках U и V. Докажите, что все прямые UV проходят через одну точку.
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. Прямая, проходящая через A, пересекает окружность в точках D и E. Хорда BX параллельна прямой DE. Докажите, что отрезок XC проходит через середину отрезка DE.
Страница: << 4 5 6 7 8 9 10 [Всего задач: 49] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|