ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружности C1 и C2 внешне касаются в точке A . Прямая l касается окружности C1 в точке B , а окружности C2 – в точке D . Через точку A проведены две прямые: одна проходит через точку B и пересекает окружность C2 в точке E , а другая касается окружностей C1 и C2 и пересекает прямую l в точке F . Найдите радиусы окружностей C1 и C2 , если AE=1 , EF= .

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 159]      



Задача 110818

Темы:   [ Касающиеся окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Окружности C1 и C2 внешне касаются в точке A . Прямая l касается окружности C1 в точке B , а окружности C2 – в точке D . Через точку A проведены две прямые: одна проходит через точку B и пересекает окружность C2 в точке F , а другая касается окружностей C1 и C2 и пересекает прямую l в точке E . Найдите радиусы окружностей C1 и C2 , если AF=3 , BE= .
Прислать комментарий     Решение


Задача 110819

Темы:   [ Касающиеся окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Окружности C1 и C2 внешне касаются в точке A . Прямая l касается окружности C1 в точке B , а окружности C2 – в точке D . Через точку A проведены две прямые: одна проходит через точку B и пересекает окружность C2 в точке E , а другая касается окружностей C1 и C2 и пересекает l в точке F . Найдите радиусы окружностей C1 и C2 , если AB=4 , EF= .
Прислать комментарий     Решение


Задача 110820

Темы:   [ Касающиеся окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Окружности C1 и C2 внешне касаются в точке A . Прямая l касается окружности C1 в точке B , а окружности C2 – в точке D . Через точку A проведены две прямые: одна проходит через точку B и пересекает окружность C2 в точке F , а другая касается окружностей C1 и C2 и пересекает прямую l в точке E . Найдите радиусы окружностей C1 и C2 , если AE=3 , AF=4 .
Прислать комментарий     Решение


Задача 110821

Темы:   [ Касающиеся окружности ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Окружности C1 и C2 внешне касаются в точке A . Прямая l касается окружности C1 в точке B , а окружности C2 – в точке D . Через точку A проведены две прямые: одна проходит через точку B и пересекает окружность C2 в точке E , а другая касается окружностей C1 и C2 и пересекает прямую l в точке F . Найдите радиусы окружностей C1 и C2 , если AE=1 , EF= .
Прислать комментарий     Решение


Задача 54653

Темы:   [ Построения с помощью вычислений ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4+
Классы: 8,9

Даны отрезки a и b. Постройте такой отрезок x, что

$\displaystyle \root$4$\displaystyle \of$x = $\displaystyle \root$4$\displaystyle \of$a + $\displaystyle \root$4$\displaystyle \of$b.

Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .