ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На диагонали BD прямоугольной трапеции ABCD (∠D = 90°, BC || AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую BC в точках P и M. Найдите длину стороны AB, если BC = 9, AD = 8, PM = 4. Решение |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 541]
На диагонали BD прямоугольной трапеции ABCD (∠D = 90°, BC || AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую BC в точках P и M. Найдите длину стороны AB, если BC = 9, AD = 8, PM = 4.
В равнобокой трапеции AВСD основания AD и ВС равны 12 и 6 соответственно, а высота равна 4. Сравните углы ВАС и САD.
К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.
Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
В круге радиуса r проведена хорда, равная a. Найдите площадь получившегося сегмента.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 541] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|