ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Вспомогательные подобные треугольники
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На диагонали BD прямоугольной трапеции ABCD (∠D = 90°, BC || AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую BC в точках P и M. Найдите длину стороны AB, если BC = 9, AD = 8, PM = 4. Решение |
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 512]
На сторонах AB и BC остроугольного треугольника ABC построены как на основаниях равнобедренные треугольники AFB и BLC, причём один из них лежит внутри треугольника ABC, а другой построен во внешнюю сторону. При этом ∠AFB = ∠BLC и ∠CAF = ∠ACL. Докажите, что прямая FL отсекает от угла ABC равнобедренный треугольник.
На диагонали BD прямоугольной трапеции ABCD (∠D = 90°, BC || AD) взята точка Q так, что BQ : QD = 1 : 3. Окружность с центром в точке Q касается прямой AD и пересекает прямую BC в точках P и M. Найдите длину стороны AB, если BC = 9, AD = 8, PM = 4.
Два правильных тетраэдра ABCD и MNPQ расположены так, что плоскости BCD и NPQ совпадают, вершина M лежит на высоте AO первого тетраэдра, а плоскость MNP проходит через центр грани ABC и середину ребра BD. Найдите отношение длин рёбер тетраэдров.
В трапеции ABCD с основаниями AD и BC на стороне AB взята такая точка E, что AE : BE = AD : BC. Точка H – проекция точки D на прямую CE.
На сторонах AB и BC треугольника ABC выбраны соответственно точки X и Y так, что ∠AXY = 2∠C, ∠CYX = 2∠A.
Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 512] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|