ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 512]      



Задача 66786

Темы:   [ Описанные четырехугольники ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
Прислать комментарий     Решение


Задача 55240

Темы:   [ Неравенства с углами ]
[ Вспомогательные подобные треугольники ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4+
Классы: 8,9

На плоскости даны прямая l и две точки P и Q, лежащие по одну сторону от неё. Найдите на прямой l такую точку M, для которой расстояние между основаниями высот треугольника PQM, опущенных на стороны PM и QM, наименьшее.

Прислать комментарий     Решение

Задача 66932

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 5-
Классы: 9,10,11

Автор: Дидин М.

К вписанной окружности треугольника $ABC$ проведена касательная, параллельная $BC$. Она пересекает внешнюю биссектрису угла $A$ в точке $X$. Точка $Y$ – середина дуги $BAC$ описанной окружности. Докажите, что угол $XIY$ прямой.
Прислать комментарий     Решение


Задача 66782

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Теорема Стюарта ]
[ Теорема Карно ]
Сложность: 5
Классы: 9,10,11

Сторона $AC$ треугольника $ABC$ касается вписанной окружности в точке $K$, а соответствующей вневписанной в точке $L$. Точка $P$ – проекция центра вписанной окружности на серединный перпендикуляр к $AC$. Известно, что касательные в точках $K$ и $L$ к описанной окружности треугольника $BKL$ пересекаются на описанной окружности треугольника $ABC$. Докажите, что прямые $AB$ и $BC$ касаются окружности $PKL$.
Прислать комментарий     Решение


Задача 111726

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Вспомогательные подобные треугольники ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Неравенства для элементов треугольника (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Применение тригонометрических формул (геометрия) ]
[ Возрастание и убывание. Исследование функций ]
[ Доказательство от противного ]
Сложность: 5+
Классы: 8,9,10,11

В треугольнике провели серединные перпендикуляры к его сторонам и измерили их отрезки, лежащие внутри треугольника.
  а) Все три отрезка оказались равны. Верно ли, что треугольник равносторонний?
  б) Два отрезка оказались равны. Верно ли, что треугольник равнобедренный?
  в) Могут ли длины отрезков равняться 4, 4 и 3?

Прислать комментарий     Решение

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .