Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом?

Вниз   Решение


Автор: Чичин В.

Постройте треугольник по двум сторонам так, чтобы медиана, проведённая к третьей стороне, делила угол треугольника в отношении  1 : 2.

ВверхВниз   Решение


В круге проведены два диаметра AB и CD, M — некоторая точка. Известно, что AM = 15, BM = 20, CM = 24. Найдите DM.

ВверхВниз   Решение


Неравнобедренный треугольник ABC вписан в окружность с центром O и описан около окружности с центром I. Точка B', симметричная точке B относительно прямой OI, лежит внутри угла ABI. Докажите, что касательные к описанной окружности треугольника BB'I, проведённые в точках B' и I, пересекаются на прямой AC.

ВверхВниз   Решение


Каждую букву исходного сообщения заменили её двузначным порядковым номером в русском алфавите согласно таблице:

Полученную цифровую последовательность разбили (справа налево) на трёхзначные цифровые группы без пересечений и пропусков. Затем каждое из полученных трёхзначных чисел умножили на 77 и оставили только три последние цифры произведения. В результате получилась следующая последовательность цифр:  317564404970017677550547850355.  Восстановите исходное сообщение.

ВверхВниз   Решение


Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если BC=2 , CD=10 .

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1282]      



Задача 111089

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если BE=26 , DE=9 .
Прислать комментарий     Решение


Задача 111090

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если BC=2 , CD=10 .
Прислать комментарий     Решение


Задача 111091

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если AB=5 , CD=10 .
Прислать комментарий     Решение


Задача 111463

Темы:   [ Угол между касательной и хордой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В равнобедренном треугольнике ABC угол при вершине B равен α. В точке C проведена касательная к описанной окружности этого треугольника, пересекающая продолжение биссектрисы BD угла B в точке E. Найдите отношение площади треугольника CDE к площади треугольника ABC.

Прислать комментарий     Решение

Задача 111551

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

Центр окружности радиуса 5, описанной около равнобедренной трапеции, лежит на большем основании, а меньшее основание равно 6. Найдите площадь трапеции.
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .