ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Попробуйте найти все натуральные числа, которые больше своей последней цифры в 5 раз. Рёбра прямоугольного параллелепипеда равны a , b и c . Найдите углы между его диагоналями. В выпуклом пятиугольнике ABCDE диагонали AC и EC являются биссектрисами углов при вершинах A и E соответственно, ∠B = 125°, ∠D = 55°, а площадь пятиугольника ABCDE равна 14. Найдите площадь треугольника ACE. Точки Q и R расположены соответственно на сторонах MN и MP треугольника MNP, причём MQ = 3, MR = 4. Найдите площадь треугольника MQR, если MN = 4, MP = 5, NP = 6. Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей которого не имеют общих точек (кроме вершин)? Диагональ прямоугольного параллелепипеда равна l и образует с плоскостью основания угол α . Найдите площадь боковой поверхности параллелепипеда, если площадь его основания равна S . Пусть Oa, Ob и Oc – центры описанных окружностей треугольников PBC, PCA и PAB. Рёбра прямоугольного параллелепипеда равны 2, 3, и 4. Найдите угол между его диагоналями.
В трапеции ABCD с меньшим основанием BC и
площадью, равной 2, прямые BC и AD касаются
окружности диаметром |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 175]
Проведена окружность S с центром в вершине C равнобедренного треугольника ABC ( AC=BC ). Радиус окружности меньше AC . Найдите на этой окружности такую точку P , чтобы касательная к окружности, проведённая в этой точке, делила пополам угол APB .
В трапеции ABCD с меньшим основанием BC и
площадью, равной 2, прямые BC и AD касаются
окружности диаметром
В трапеции ABCD с большим основанием BC и
площадью, равной 4
В трапеции ABCD с меньшим основанием BC и
площадью, равной 4, прямые BC и AD касаются
окружности диаметром 2 в точках B и D
соответственно. Боковые стороны трапеции AB и
CD пересекают окружность в точках M и N
соответственно. Длина MN равна
В трапеции ABCD с большим основанием BC и
площадью, равной 12
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 175]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке