Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 47]
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли многогранник, проекциями которого на три попарно перпендикулярные плоскости являются: треугольник, четырёхугольник и пятиугольник?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Правильный треугольник, лежащий в плоскости $\alpha$, ортогонально спроектировали на непараллельную ей плоскость $\beta$, полученный треугольник ортогонально спроектировали на плоскость $\gamma$ и получили снова правильный треугольник. Докажите, что
а) угол между плоскостями $\alpha$ и $\beta$ равен углу между плоскостями $\beta$ и $\gamma$;
б) плоскость $\beta$ пересекает плоскости $\alpha$ и $\gamma$ по перпендикулярным друг другу прямым.
|
|
Сложность: 4 Классы: 10,11
|
Найдите объём тетраэдра
ABCD с рёбрами
AB=3
,
AC=5
и
BD = 7
, если расстояние между серединами
M и
N его рёбер
AB и
CD равно 2, а прямая
AB образует равные углы с прямыми
AC ,
BD и
MN .
|
|
Сложность: 4 Классы: 10,11
|
Найдите объём тетраэдра
ABCD с рёбрами
AB=5
,
AC=1
и
CD = 7
, если расстояние между серединами
M и
N его рёбер
AC и
BD равно 3, а прямая
AC образует равные углы с прямыми
AB ,
CD и
MN .
Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов
их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой
площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что
проекции каждых двух из них на эту грань не перекрываются.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 47]