Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 183]
|
|
Сложность: 4 Классы: 10,11
|
В прямоугольном параллелепипеде
ABCDA1
B1
C1
D1
рёбра
AB ,
BC и
BB1
равны соответственно
2
a ,
a и
a , а точка
E – середина
BC . Вершины
M и
N правильного тетраэдра
MNPQ лежат на прямой
C1
E , а вершины
P и
Q – на прямой,
проходящей через точку
B1
и пересекающей прямую
AD в точке
F .
Найдите:
а) отрезок
DF ;
б) расстояние между серединами отрезков
MN и
PQ .
|
|
Сложность: 4 Классы: 10,11
|
Длина ребра правильного тетраэдра
ABCD равна
a . Точка
E – середина ребра
CD , точка
F – середина высоты
BL грани
ABD . Отрезок
MN с концами на прямых
AD и
BC пересекает прямую
EF и перпендикулярен ей. Найдите длину
этого отрезка.
|
|
Сложность: 4 Классы: 10,11
|
Сфера вписана в правильную треугольную пирамиду
SABC (
S –
вершина), а также вписана в прямую треугольную призму
KLMK1
L1
M1
,
у которой
KL=KM=
, а боковое ребро
KK1
лежит на прямой
AB .
Найдите радиус сферы, если известно, что прямая
SC параллельна
плоскости
LL1
M1
M .
|
|
Сложность: 4 Классы: 10,11
|
Сфера вписана в правильную треугольную пирамиду
SKLM (
S –
вершина), а также вписана в
прямую треугольную призму
ABCA1
B1
C1
, у которой
AB=AC ,
BC=4
,
боковое ребро
AA1
лежит на прямой
KL . Найдите радиус
сферы, если известно, что прямая
SM параллельна плоскости
BB1
C1
C .
|
|
Сложность: 4+ Классы: 10,11
|
Пусть MA, MB, MC – середины сторон неравнобедренного треугольника ABC, точки HA, HB, HC, отличные от MA, MB, MC, лежащие на соответствующих сторонах, таковы, что MAHB = MAHC, MBHA = MBHC, MCHA = MCHB. Докажите, что HA, HB, HC – основания высот треугольника ABC.
Страница:
<< 31 32 33 34
35 36 37 >> [Всего задач: 183]