Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

Вниз   Решение


Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , DAC = , ACD = , угол между ребром DC и гранью ABC равен . Найдите расстояние от точки E до плоскости BCD , угол между ребром AB и гранью ACD , а также угол между гранями ABD и ABC .

ВверхВниз   Решение


Автор: Фольклор

На координатной плоскости задан график функции  y = kx + b  (см. рисунок). В той же координатной плоскости схематически постройте график функции  y = kx² + bx.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и DC взаимно перпендикулярны, ADB = , ABD = , угол между ребром CD и гранью ABD равен , AD=a , середина ребра CD равноудалена от плоскостей ABD и ABC . Найдите ребро BC , угол CDB и угол между ребром AB и гранью BCD .

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 168]      



Задача 97954

Темы:   [ Средние величины ]
[ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 7,8,9

Автор: Фомин С.В.

Коля и Вася за январь получили по 20 оценок, причём Коля получил пятерок столько же, сколько Вася четвёрок, четвёрок столько же, сколько Вася троек, троек столько же, сколько Вася двоек, и двоек столько же, сколько Вася – пятёрок. При этом средний балл за январь у них одинаковый. Сколько двоек за январь получил Коля?

Прислать комментарий     Решение

Задача 111333

Темы:   [ Средние величины ]
[ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

Прислать комментарий     Решение

Задача 34979

Темы:   [ Средние величины ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8

Имеется набор натуральных чисел (известно, что чисел не меньше семи), причём сумма каждых семи из них меньше 15, а сумма всех чисел из набора равна 100. Какое наименьшее количество чисел может быть в наборе?

Прислать комментарий     Решение

Задача 64665

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 10,11

Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.

Прислать комментарий     Решение

Задача 65281

Тема:   [ Средние величины ]
Сложность: 3
Классы: 8,9,10,11

При изучении иностранного языка класс делится на две группы. Ниже даны списки групп и полугодовые оценки учащихся. Может ли учительница английского языка перевести одного ученика из первой группы во вторую так, чтобы средний балл учащихся в обеих группах вырос?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .