Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В центре круглого бассейна плавает ученик. Внезапно к бассейну подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?

Вниз   Решение


Саша выложил треугольник со стороной из нескольких спичек, разделённый на маленькие треугольники (см. рис.), а Петя – такой же треугольник, сторона которого на три спички больше. Петя считает, что для этого ему потребовалось на 111 спичек больше чем Саше, а Саша с ним не согласен. Кто из мальчиков прав?

ВверхВниз   Решение


Для натурального a обозначим через P(a) наибольший простой делитель числа  a² + 1.
Докажите, что существует бесконечно много таких троек различных натуральных чисел a, b, c, что  P(a) = P(b) = P(c).

ВверхВниз   Решение


Стороны параллелограмма равны a и b , а острый угол между диагоналями равен α . Найдите площадь параллелограмма.

ВверхВниз   Решение


Автор: Фольклор

Сумма номеров домов на одной стороне квартала равна 247. Какой номер имеет седьмой дом от угла?

ВверхВниз   Решение


Автор: Рудаков И.

На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой.

ВверхВниз   Решение


Автор: Фольклор

На турнир приехали школьники из разных городов. Один из организаторов заметил, что из них можно сделать 19 команд по 6 человек, и при этом еще менее четверти команд будут иметь по запасному игроку. Другой предложил сделать 22 команды по 5 или по 6 человек в каждой, и тогда более трети команд будут состоять из шести игроков. Сколько школьников приехало на турнир?

ВверхВниз   Решение


В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 133]      



Задача 35354

Темы:   [ Арифметика остатков (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 8,9

Может ли сумма  1 + 2 + 3 + ... + (n – 1) + n  при каком-нибудь натуральном n оканчиваться цифрой 7?

Прислать комментарий     Решение

Задача 60466

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9

Существуют ли  а) 5,  б) 6 простых чисел, образующих арифметическую прогрессию?

Прислать комментарий     Решение

Задача 60694

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Найдите конечную арифметическую прогрессию с разностью 6 максимальной длины, состоящую из простых чисел.

Прислать комментарий     Решение

Задача 78655

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9

Даны числа: 4, 14, 24, ..., 94, 104. Докажите, что из них нельзя вычеркнуть сперва одно число, затем из оставшихся ещё два, затем ещё три и, наконец, ещё четыре числа так, чтобы после каждого вычёркивания сумма оставшихся чисел делилась на 11.

Прислать комментарий     Решение

Задача 111359

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9

В таблицу 29×29 вписали числа 1, 2, 3, ..., 29, каждое по 29 раз. Оказалось, что сумма чисел над главной диагональю в три раза больше суммы чисел под этой диагональю. Найдите число, вписанное в центральную клетку таблицы.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .