ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника. Найдите геометрическое место центров всех вневписанных окружностей прямоугольных треугольников, имеющих данную гипотенузу. Середину более длинной боковой стороны прямоугольной трапеции соединили с вершинами трапеции. При этом трапеция разделилась на три равнобедренных треугольника. Найдите величину острого угла трапеции. ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что AB = 2AD. Точки M и N на стороне AC таковы, что AM = NC. На продолжении стороны CB за точку B взята такая точка K, что CN = BK. Найдите угол между прямыми NK и DM. Расстояния от одного из концов диаметра окружности до концов хорды, параллельной этому диаметру, равны 5 и 12. Найдите радиус окружности. |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 306]
Окружность, построенная на большей боковой стороне AB прямоугольной трапеции ABCD как на диаметре, пересекает основание AD в его середине. Известно, что AB=10 , CD=6 . Найдите среднюю линию трапеции.
Расстояния от одного из концов диаметра окружности до концов хорды, параллельной этому диаметру, равны 5 и 12. Найдите радиус окружности.
В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD.
Хорда окружности равна 10. Через один конец хорды проведена касательная к окружности, а через другой — секущая, параллельная касательной. Найдите радиус окружности, если внутренний отрезок секущей равен 12.
Трапеция KLMN с основаниями LM и KN вписана в окружность, центр которой лежит на основании KN. Диагональ LN трапеции равна 4, а угол MNK равен 60o. Найдите основание LM трапеции.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 306]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке